GENERATION OF UNIFORM SOLID HD LAYERS INSIDE SPHERICAL CAPSULES USING INFRA-RED ILLUMINATION[†] D. N. Bittner¹, G. W. Collins², S. Letts², E. Monsler¹ ¹ W. J. Schafer Associates, Inc. Livermore, CA 94550 ² Lawrence Livermore National Laboratory, University of California, Livermore, CA 94551 Several implosion hydrodynamics issues of cryogenic targets can be investigated with HD or D₂ without the hazards of handling high pressure tritium. However, without the tritium radiation heating, no solid redistribution will occur. In previous experiments we have successfully redistributed solid D₂ or HD by pumping the collision induced vibration-rotation bands characteristic of the hydrogens¹. In those experiments the infra-red illumination of the solid was unidirectional along one axis of a sapphire container. Here we describe a method for generating uniform solid HD layers in spherical plastic capsules by uniform infra-red illumination. An F-center laser provides infra-red radiation for injection into two ports of the "layering chamber" which in our case is a cooled integrating sphere. The injected radiation diffusely reflects off the 25mm O.D. inner cavity wall resulting in uniform illumination of a 1mm O.D. spherical capsule placed at cavity center. The redistribution of the solid is viewed and recorded using a second orthogonal pair of ports. ¹ "Infra-red redistribution of D₂ and HD layers for ICF", G.W. Collins, D.N. Bittner, E. Monsler, S. Letts, E.R. Mapoles, and T.P. Bernat, JVSTA, to be published [†]Work performed under auspices of the US Department of Energy by W.J. Schafer Associates under Contract DE-AC03-95SF20732 and Lawrence Livermore Laboratory under Contract W-7405-ENG-48.